A Coordinate Descent Method for Robust Matrix Factorization and Applications
نویسنده
چکیده
Matrix factorization methods are widely used for extracting latent factors for low rank matrix completion and rating prediction problems arising in recommender systems of on-line retailers. Most of the existing models are based on L2 fidelity (quadratic functions of factorization error). In this work, a coordinate descent (CD) method is developed for matrix factorization under L1 fidelity so that the related minimization is done one variable at a time and the factorization error is sparsely distributed. In low rank random matrix completion and rating prediction of MovieLens-100k datasets, the CDL1 method shows remarkable stability and accuracy under gross corruption of training (observation) data while the L2 fidelity based methods rapidly deteriorate. A closed form analytical solution is found for the one-dimensional L1-fidelity subproblem, and is used as a building block of CDL1 algorithm whose convergence is analyzed. The connection with the well-known convex method, the robust principal component analysis (RPCA), is made. A comparison with RPCA on recovering low rank Gaussian matrices under sparse and independent Gaussian noise shows that CDL1 maintains accuracy at much lower sampling ratios (from much fewer observed entries) than that for RPCA.
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملDID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملDescent methods for Nonnegative Matrix Factorization
In this paper, we present several descent methods that can be applied to nonnegative matrix factorization and we analyze a recently developped fast block coordinate method called Rank-one Residue Iteration (RRI). We also give a comparison of these different methods and show that the new block coordinate method has better properties in terms of approximation error and complexity. By interpreting...
متن کاملSparse non-negative tensor factorization using columnwise coordinate descent
Many applications in computer vision, biomedical informatics, and graphics deal with data in the matrix or tensor form. Non-negative matrix and tensor factorization, which extract data-dependent non-negative basis functions, have been commonly applied for the analysis of such data for data compression, visualization, and detection of hidden information (factors). In this paper, we present a fas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016